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Abstract |

We present a 3-fold distance metric and a trans-

fer function to evaluate the similarity of two �nite

length sequences. We analyze the sensitivity charac-

teristics of the proposed metrics for Gaussian shape

functions. Our method is based on cross-correlation

matrix analysis and extrapolation of a minimum cost

path using dynamic programming. Unlike the exist-

ing sequential (bin-by-bin) and non-sequential (cross-

bin) approaches that compute a single scalar as a re-

sult of the measurement, we calculate the distance as

well as determine how two sequences are correlated

with each other in terms of a non-parametric transfer

function. We shown that the proposed metrics pro-

vide better discrimination than conventional metrics

do. Furthermore, we show that we can reduce our

metric to any one of sequential metrics with suitable

simpli�cation.

I. Introduction

Distance between two sequences is one of the most common
measures used in computer algorithms for sequence analysis.
From image retrieval in multimedia databases to comparison
of amino acid sequences for DNA pattern recognition, it is
used in various areas. However, past studies have shown that
most distance metrics are neither robust to small shape de-
formations of sequences nor nonlinear shifts on the indexing
axis. Furthermore, there is no metric that can compute the
distance and evaluate the alignment of sequences in terms a
transfer function at the same time.

A �nite-length sequence, h, is a vector [h[0]; : : : ; h[M ]] in
which each bin h[m] is the value of the vector at the index
number m. In case h represent an image histogram, h[m]
contains the number of pixels corresponding to the color range
of m in the image I where M is the total number of the bins.
In order words, it is a mapping from the set of color vectors to
the set of positive real numbers R+. In this paper, we assume
that bins are identical i.e. sampling frequency of the indexing
axis is constant mi�mi�1 = mj�mj�1, and the sequences are

normalized such that
PM

m=0
h[m] = 1.

II. Cross-Correlation Distance (CCD)

We de�ne a cross-correlation matrix C between two se-
quences as the set of positive real numbers that represent the
bin-wise distances. Let h1[m] and h2[m] be two sequences
with m = 1; : : : ;M and m = 1; : : : ; N i.e. the lengths are not

necessarily same. The cross-correlation matrix is

CM�N = h1 
 h2

=

2
64

c11 c12 : : : c1N
c21 : :

: : :

cM1 : : : cMN

3
75 (1)

where each element is a positive real number, and

cmn = d(h1[m]; h2[n]) (2)

where d(�) � 0 is a distance norm which satis�es the triangle-
inequality. As a matter of fact, this de�nition stands for the
dissimilarity of sequences instead of their correlation. The
correlation can be easily established by de�ning cmn = 1�
d(h1[m]�h2[n]).

Theorem 1 The sum of the diagonal elements of C repre-

sents the bin-by-bin distance with given norm d(�) if the se-

quences have equal number of bins M = N .

For example, by choosing the distance norm as L1, the sum of
the diagonals becomes the magnitude distance between a pair
of sequences

MX
m

cmm =

MX
m

jh1[m]� h2[m]j = dL1(h1; h2): (3)

Let p : f(m0; n0); :::; (mi; ni); :::; (mI ; nI )g represents a mini-
mum cost path (de�ned in the next section) from the c11 to
cMN in the matrix C, i.e. the sum of the matrix elements
on the connected path p gives the minimum score among all
possible routes. The total length of the path cannot be more
than the sum of the lengths of the sequencesp

M2 +N2 � I �M +N (4)

We de�ne a cost function for the path as g(pi) = cmi;ni
where

pi denotes the path element (mi; ni). We de�ne a mapping
i ! j from the path indices to the projection onto the di-
agonal of the matrix C, and an associated transfer function
f(j) that gives the distance from the diagonal with respect to
the projection j. The transfer function is a mapping from the
matrix indices to real numbers

(mi; ni)
t�! f(j) (5)

where j = 1; : : : ; J and J =
p
M2 +N2. Depending on the

shape of the path, these mappings may not be one-to-one.



Figure 1: The �gure shows the relation between the min-
imum cost path and f(j).

From Fig.1, the angle between the diagonal and the current
path index is

� = tan�1
�
M

N

�
� tan�1

�
mi

ni

�
(6)

Without loss of generality, we may assume M = N , i.e.
tan�1(M

N
) = �

4
. Then, the magnitude of the projection j

is

j = jpij � cos � (7)

=
p
m2
i + n2i cos

�
�

4
� arctan

�
mi

ni

��
(8)

=
mi + nip

2
(9)

Thus, the transfer function f(j) becomes

f(j)2 = �j2 + (m2
i + n

2
i ) (10)

=
1

2

�
m
2
i + n

2
i

�
+mini (11)

The f(j) is negative ifmi < ni. The mapping t in equation 5 is
decomposed into two functions tm(mi) = ni and tn(ni) = mi

such that they give the minimum cost path as a function of
sequence index.

Their derivatives with respect to both indices represent the
amount of warping of the bins

@tm(mi) = tm(mi)� tm(mi � 1) (12)

@tn(ni) = tn(ni)� tn(ni � 1) (13)

It is straightforward to derive the following properties

f(j) = 0 ) mi = ni (14)

f(j) > 0 ) mi > ni (15)

f(j) < 0 ) mi < ni (16)

@f(j) = 0 ) @tm(mi) = @tn(ni) (17)

@f(j) > 0 ) @tm(mi) < @tn(ni) (18)

@f(j) < 0 ) @tm(mi) > @tn(ni) (19)

where the derivative of f(j) with respect to j is limited in
range ��

2
� @f(j) � �

2

De�nition The cross-correlation distance (CCD) is the total
cost along the transfer function (CCF)

dCC(h1; h2) =

IX
i=0

jg(mi; ni)j (20)

Figure 2: Each vertex represents a matrix index combi-
nation and each edge is the corresponding matrix element
for that index.

An alternative de�nition of the above distance metric weights
the transfer function with the current cost

dCC(h1; h2) =

JX
j=0

jf(j)jg((mi; ni)) (21)

The distance can be measured as the length of the minimum
cost path as well

dCC(h1; h2) = J: (22)

III. Dynamic Programming

Dynamic programming is an approach developed to solve
sequential, or multi-stage, decision problems [4]. Basically,
what dynamic programming approach does is that it solves
a multi-variable problem by solving a series of single variable
problems. The essence of dynamic programming is Richard
Bellman's Principle of Optimality. This principle is intuitive:
from any point on an optimal trajectory, the remaining tra-
jectory is optimal for the corresponding problem initiated at
that point.

Given two sequences, the question is what is the best align-
ment of their shapes and how can the alignment be deter-
mined? We reduce the comparison of two sequences to �nd-
ing the minimum cost path in a directed weighted graph. A
minimum cost path from a vertex to another vertex in a di-
rected graph is a path that has the smallest total edge-weights
among all paths from the same source vertex to the same des-
tination vertex. Let v be a vertex and e be an edge between
the vertices of a directed weighted graph. We associate a cost
to each edge !(e). We want to �nd the minimum cost path
by moving from an origin vertex v0 to a destination vertex
vS . The cost of a path p(v0; vS) = fv0; ::; vSg is the sum of its
constituent edges


(p(v0; vS)) =

SX
s

!(vs) (23)

Suppose we already know the costs 
(v0; v�) from v0 to ev-
ery other vertex. Let's say v� is the last vertex the path
goes through before vS . Then, the overall path must be
formed by concatenating a path from v0 to v�, i.e. p(v0; v�),
with the edge e(v�; vS). Further, the path p(v0; v�) must
itself be a minimum cost path since otherwise concatenat-
ing the minimum cost path with edge e(v�; vS) would de-
crease the cost of the overall path. Another observation is
that 
(v0; v�) must be equal or less than 
(v0; vS), since

(v0; vS) = 
(v0; v�)+!(v�; vS) and we are assuming all edges



have non-negative costs, i.e. !(v�; vS) � 0. Therefore if we
only know the correct value of 
(v0; v�) we can �nd a mini-
mum cost path.

We modi�ed Dijkstra's algorithm is modi�ed to �nd the
shortest paths between one source vertex and all the other
vertices which are the destinations. To �nd all minimum cost
paths between all pairs of vertices we need to apply it to each
of the vertices as a source vertex. Let Q be the set of active
vertices whose minimum cost paths from v0 have already been
determined, and ~p(v) is a back pointer vector that shows the
neighboring minimum cost vertex of v. Then the iterative
procedure is given as

1. Set u0 = v0 Q = fu0g, 
(u0) = 0, ~p(v0) = v0, and
!(v) =1 for v 6= u0.

2. For each ui 2 Q: if v is a connected to ui, assign !(v) 
minf!(ui);
(ui) + !(v)g. If !(v) is changed, assign
~p(v) = ui and update Q Q [ v.

3. Remove ui from Q.

4. If Q 6= ; go to step 2.

Then the minimum cost path p(v0; vs) = fv0; :::; vSg is ob-
tained by tracing back pointers by starting from the desti-
nation vertex vS as vs�1 = ~p(vs). The algorithm takes time
O(S2). As shown in �gure 2, the graph that is converted
from the cross-correlation matrix is directed such that a vertex
vmn has directional edges to vertices vm+1;n; vm;n+1; vm+1;n+1

only. Therefore, we do not allow overlaps of the bin indices,
and eliminate cyclic paths.

The dynamic programming can be applied to obtain the
partial matches between two sequences. To �nd the best
match for the part [ma; :::; mb] of the �rst sequence in the
second sequence, we modify the initial conditions such that
the initial vertex is iteratively assigned to (ma; n1), where
n1 = 1; ::; N , and the target vertex is chosen as (mb; n2) where
n2 = N

M
ma; ::; N . The above process is repeated for every

combination and the minimum cost path is chosen.

IV. Case Study: Illumination Compensation

We tested the proposed transfer function to recover dis-
torted color histograms. The intensity values of an input
image Fig.3-a is distorted non-linearly by hand to obtain its
over-exposed version Fig.3-b. We extracted histograms (Fig.3-
c, upper graphs) of the input and over-exposed images. We
computed the cross-correlation matrix using these histograms.
As the distance kernel, we used the L2 norm. Then, we found
the minimum cost path within the cross-correlation matrix
(Fig.3-d) by starting from the lower-right end of the matrix
and tracking towards to upper-left corner as explained in the
dynamic programming section. We remapped the intensity
values of the over-exposed image using transfer function that
is obtained by projecting the minimum cost path (Fig.3-c,
lower graph) on the main diagonal as explained in the cross-
correlation section. Note that, the distortion is not linear,
and it is not parametric either. The result of the compensa-
tion is given in Fig.3-e. We observed that the transfer function
matches with the non-linear distortion characteristics. As visi-
ble in the histogram graph (Fig.3-c), the nonparametric trans-
fer function successfully compensated for the non-linear dis-
tortions by taking the advantage of the non-parametric trans-
fer function.

(a) (b)

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250
−100

−50

0

50

(c)

(d) (e)

Figure 3: (a) A sample image, (b) its over-exposed ver-
sion. (c) The upper graph shows the histograms of the
input image (black), over-exposed image (blue), and the
compensated image (red). The lower graph is the trans-
fer function. (d) The cross-correlation matrix and the
minimum cost path (yellow). Higher red values indicate
smaller distances. (e) The compensated image.

We repeated the same analysis using several other
color/gray-level images. We observed that the corrected im-
ages visually are much similar to the originals after the com-
pensation. Their color histograms are accurately aligned as
well. The improvement is substantial even though histogram
operations are invariant to spatial transformations, and thus
have only limited impact. We computed the distance of two
histograms such that the distance score allows the amount
of non-linear, non-parametric but sequential alignment of the
two histograms. Note that, no other distance metric can give
such a compensated distance.

V. Sensitivity Analysis for Gaussian Functions

We analyzed the sensitivity characteristics of the proposed
metric for Gaussian shaped sequences. We generated a ref-
erence Gaussian sequence with zero mean and unit variance
N (0; 1), and compared it with a set (Set-1) of Gaussians se-



quences N (k; 1) where k : 1; ::; 10, i.e. their variances are
same but the means are di�erent, as plotted in Fig.5-a. We
also tested another set (Set-2) of zero mean Gaussians with
di�erent variances N (0; k), k : 1; ::; 10 (Fig.5-b). We com-
puted distances between the original Gaussian and the Set-1
for the metrics that are described in the Appendix and also
the corresponding CDD distances using both the total cost
and the total length norms as de�ned in equations 20 and 22.
We presented these results in Fig. 5-c. As visible, the total
cost norm is shift invariant. Then, we computed distances for
the Set-2. The corresponding graph is given in Fig.5-d.

We observed that the Kolmogorov-Smirnov, Lorentzian and
Intersection distances have almost identical responses, and
the Bhattacharyya and Kullback-Leibler distances have simi-
lar results for the Set-1. For same-mean shifted-variance case
(Set-2), the Lorentzian and magnitude distances have similar
responses.

As visible, one norm of the CCD metric (total cost) can
identify the same shape sequences while another norm (to-
tal length) can e�ectively detect the mean di�erences for the
Gaussian shape functions. An ideal metric is supposed to have
linear response for linearly varying means and variances of the
input sequences in our case. Most of the above metrics satis-
�es this constraint. The graphs obtained using the CCD show
that it is linearly proportional to the linear changes of the in-
put sequence. The graphs justi�es that the proposed metrics
are sensitive to the changes of the mean and variance values
for Gaussian shape functions.

We also evaluated each distance metric described in the Ap-
pendix and our CCD metrics for varying mean and variance
values as given in Fig.4. We observed that the CCD metrics
are very sensitive to the shape changes of the input sequences.
Even the mean value of the sequences are diverges, our metrics
accurately identify variance deviations. On the other hand,
most other conventional metrics lose their sensitivity and be-
come inversely proportional to the variance changes in case of
severe mean shifts.

VI. Discussion on Distance Measures

A major drawback of the bin-by-bin distance measures
(Minkowski, Intersection, Lorentzian, Chi, Bhattacharyya,
etc.) is that they account only for the correspondence be-
tween bins with the same index, and do not use information
across bins. A shift of the bin index may result in larger dis-
tances although the two sequences otherwise have the same
values. For image histograms, quantization is yet another
consideration; a slight change in lighting conditions may re-
sult in a corresponding shift in the color sequence, causing
these metrics to misjudge similarity completely. Contribution
of the empty bins is also important. Weighted versions of the
Minkowski metric may underestimate distances because they
tend to accentuate the similarity between color sequences pre-
senting many nonempty bins. Furthermore, not all sequences
have the same number of bins. Yet, the bin size may not
be identical within the same sequence either. The bin-by-bin
measures do not allow matching di�erent size sequences, while
the CCD does.

The Hausdor� distance provides the best mechanism to
handle partial matches, as well as the sequence intersection,
the quadratic distance, the EMD, and the CCD. Since the K-
L divergence evaluates only the relative distance between the
given sequences by using one of them as a reference, it is not
symmetric, thus it does not qualify as a metric. For most of
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Figure 4: (a) The CCD, which is computed using the total
length de�nition, between N (0; 1) and N (�; �2)'s where
� = 0::10; �2 = 1::10, and (b) the CCD distances that are
computed using total cost de�nition. (c) The magnitude
distances, (d) the Euclidean distances, (e) the Kullback-
Leibler distances, (f) the Bhattacharyya distances (g) the
Kolmogorov-Smirnov distances, (h) the intersection dis-
tances, (i) the Minkowski distances for L1, and (j) the
�2 distances. Except the CCD, most metrics lose sensi-
tivity and become inversely proportional to the variance
changes in case of severe mean shifts.
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Figure 5: (a) Set of Gaussian shape functions (Set-1) with di�erent mean values, (b) with di�erent variances (Set-2).
(c) The graphs of the normalized distances between the original Gaussian N (0; 1) and other Gaussian sequences in
Set-1. The cross-correlation distances are computed by Eq.20 (blue) and Eq.22 (red). The horizontal axis is the
mean value. (d) The graph of the normalized distances computed for Set-2. The horizontal axis is the variance.

the measures, the triangle inequality, which is important for
image retrieval, holds only for speci�c cases. Only the CCD
has the ability to �nd a non-linear, non-parameterized model
of the color warping between the sequences. This property is
especially important in prediction of lighting changes.

The quadratic distance requires an ambiguous covariance
matrix that states the perceptive relation between the color
bins. The choice of the covariance metric e�ects the quali�-
cation of the quadratic distance as a metric. The Hausdor�
distance does not qualify as a metric, and it overestimates the
similarity of two sequences if there is a partial match.

Not all measures can be extended to the multi-dimensional
sequences, e.g. the Kolmogrov-Smirnov statistic. Computa-
tional complexity of the cross-bin measures are higher than
the bin-by-bin measures. In cases of computing the dis-
tance where the number of bins is large, or sequences are
multi-dimensional, the EMD, the Hausdor� distance, and the
quadratic form become infeasible. Although cross-bin match-
ing is possible for EMD, the Hausdor�, and the quadratic,
these methods do not have any mechanism to preserve the or-
dering of the color bins. Obviously, changing the order of the
color bins may signi�cantly deteriorate the accuracy of the im-
age distance since a sequence is already a marginal. The CCD,
on the other hand, preserves the order of bins while match-
ing. None of the distance measures has the ability to recover a
mapping function that transfers one sequence to other except

the CCD.

VII. Conclusion

In this contribution, we investigated the sensitivity prop-
erties of our cross-correlation matrix and dynamic program-
ming based distance metric for Gaussian shape functions. We
showed that the proposed metric is sensitive to the mean and
variance variations of the input sequences. Our metric eval-
uates the similarity of two �nite length sequences and de-
termines a non-parametric transfer function that accurately
aligns the input sequences. The distance may be computed
using one of the three proposed de�nitions which are the total
cost on the minimum cost path, the length of the minimum
cost path, and the total area under the transfer function. The
total cost norm is invariant to mean changes, and it measures
the shape divergence of the sequences. The length and total
area norms react the shape mismatches as well as they de-
tect the mean changes. The transfer function compensates
for the non-linear warping of the sequences. This is an ad-
ditional functionality which is crucial in histogram matching
applications. Our metrics also provide better discrimination
than conventional metrics, and allow the matches of the empty
bins which can not be done by the most other bin-by-bin met-
rics. Furthermore, our metric can reduce to any one of the
bin-by-bin metrics by suitable simpli�cation.
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Appendix

The Minkowski distance [7] is a generalized form of
common spatial distance norms such as the magnitude
L1, the Euclidean L2, and the maximum L1. It is de�ned
as

dLp(h1; h2) =

 
MX
m=0

jh1[m]� h2[m]jp

!1=p

(24)

The higher order norms (p > 1) exponentially weight the
absolute di�erence, thus they are more sensitive to the
mismatches.

The Lorentzian distance [2] is frequently used in robust
estimators to minimize the e�ect of the outliers. It is
de�ned as

dR(h1; h2) =
MX
m=0

log (1 + jh1[m]� h2[m]j) (25)

Usually, a scaling factor is used to normalize the absolute
di�erence term.

The sequence intersection is de�ned by the area of the
overlap between two sequences

d\(h1; h2) = 1�

PM
m=0

min (h1[m]; h2[m])

min
�PM

m=0
h1[m];

PM
n=0 h2[n]

� (26)

The Bhattacharyya distance [1] is a separability mea-
sure between two Gaussian distributions. We adapted it
for sequence comparison as

dB(h1; h2) = � ln
Xp

h1(m)h2(m) (27)

The �2 distance weights inversely the squared di�er-
ences between color bins by the expected frequency, and
tends to equalize the contributions of rare and frequent
color values to the metric structure of the space

d�(h1; h2) =

MX
m=0

(h1[m]� h2[m])2

h1[m] + h2[m]
(28)

The Kullback-Leibler (K-L) distance is perhaps the
most frequently used to evaluate the distance between
two sequences of random variables that have the same
Markovian dependence order [5] because of its geometri-
cal importance.

dKL(h1; h2) =
X
m

h1[m] log
h1[m]

h2[m]
(29)

However, the K-L distance is non-additive and non-
symmetric, besides it requires identical bins.

The quadratic distance [3] is given by

dQ(h1; h2) =

MX
m=0

MX
n=0

h12[m;n]amnh12[m;n] (30)

where the coeÆcient h12[m;n] = jh1[m]� h2[n]j, and the
covariance matrix element amn is based on the perceptual
similarity of the colors m and n, which is expressed as

amn = 1�
h12[m;n]

maxh12
(31)

When a ground distance that matches perceptual dissim-
ilarity is available for single features, incorporating this
information results in perceptually more meaningful dis-
similarity measures for distributions of features.

The Earth Movers distance (EMD) is de�ned as

dE(h1; h2) = �

P
m

P
n d(h1[m]h2[n])fmnP
m

P
n fmn

(32)

where fmn stands for the ow between h1[m] and h2[n]
that minimizes an overall cost function. Given two distri-
butions, one can be seen as piles of earth in feature space,
the other as a collection of holes in that same space [6].
The distance between two color distributions is de�ned
as the minimum amount of work needed to transform
one color distribution into the other.

The Hausdor� distance computes the degree of mis-
match between two sequences as the maximum distance
between the colors
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The Kolmogorov-Smirnov statistic determines the
greatest distance between two cumulative distributions.
This statistic can be expressed in terms of the signi�-
cance level of an observed value of the statistic, giving
the probability for the null hypothesis that both data sets
are drawn from the same distribution. Despite these ad-
vantages, the K-S test has several important limitations:
It only applies to continuous distributions. It tends to
be more sensitive near the center of the distribution than
at the tails. We de�ne this statistic by the cumulative
sequences as

dKS(H1; H2) = max
m

jH1[m]�H2[m]j (34)


